RT8DN

$0-45^{\circ}$ to $0-200$ Turns \cdot DeviceNET $^{\top}$

Industrial Grade Rotational Position Sensor
Absolute Rotary Position up to 200 turns
Aluminum or Stainless Steel Enclosure Options IP68 / NEMA 6

GENERAL

Full Stroke Range Options	$0-0.125$ to 0-200 turns
Electrical Interface	CANbus ISO 11898
Protocol	DeviceNet Version 2.0
Accuracy	see ordering information
Repeatability	$\pm 0.02 \%$ full stroke
Resolution	$\pm 0.003 \%$ full stroke

Enclosure Material Options powder-painted aluminum or stainless steel Sensor plastic-hybrid precision potentiometer

Potentiometer Cycle Life see ordering information

Shaft Loading up to 10 lbs . radial and 5 lbs . axial
Starting Torque $\left(25^{\circ} \mathrm{C}\right)$ 2.0 in-oz., max.

Weight, Aluminum (Stainless Steel) Enclosure
3 lbs. (6 lbs.) max.

ELECTRICAL

Input Voltage	Bus Powered
Input Current	$40 \mathrm{~mA} \mathrm{max}$.
Address Setting (Node ID)	$0 . . .63$ set via DIP Switches (default setting: 63)
Baud Rate	$125 \mathrm{~K}, 250 \mathrm{~K}$ or 500 K set via DIP Switches
EDS file	available @ http:/celesco.com/downloads

ENVIRONMENTAL

Enclosure
NEMA 4/4X/6, IP 67/68
Operating Temperature
-40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$
Vibration
up to 10 g to 2000 Hz maximum

Outline Drawing:

0 mountrigholes
for 25 in. shaft option, mounting holes are threaded \#10-32 x 0.375 deep 120° apart on a 2.00 inch dia. BC

$x 9 \mathrm{~mm}$ deep 120° apart on a $50,8 \mathrm{~mm}$ dia. BC
(2) reference mark:
full counter-clockwise position - align mark on shaft to mark on face for start of measurement range

Ordering Information (cont.):

Mounting Style:

Baud Rate:

(1) order code: $125 \quad \mathbf{2 5 0} \quad \mathbf{5 0 0}$

Terminating Resistor:

TR
terminating resistor

NR
no terminating resistor

Electrical Connection:

I/0 Format:

Data Field

*Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable.

The CMC is a 16 -bit value that occupies the first two bytes (B_{0} and B_{1}) of the data field. B_{0} is the LSB (least significant byte) and B_{1} is the MSB (most significant byte).

The CMC starts at 0000 H with shaft at the full counter-clockwise position (0° reference mark) and continues in the clockwise direction to the end of the stroke range stopping at FFFFH. This holds true for all ranges.

**Full Stroke Range

The Full Stroke Range (FSR) is a 16 -bit value in the data field that expresses the full range of the sensor in degrees. This value can be used to convert the actual count to units of measurement should the application require it.

The full stroke measurement range occupies the second two bytes $\left(B_{2}\right.$ and $\left.B_{3}\right)$ of the data field.
B_{2} is the LSB (least significant byte) and B_{3} is the MSB (most significant byte).

This value is expressed in degrees.
Example:

Hex Value	Decimal Equivalent	Full Stroke Range
0168	360	360 degrees

Converting CMC to Degrees

If required, the CMC can easily be converted to a rotational measurement expressed in degrees instead of counts.

This is accomplished by first dividing the CMC by 65,535 (total counts over the range) and then multiplying that value by the FSR:

$$
\left(\frac{C M C}{65,535}\right) \times \mathrm{FSR}
$$

Example:
If the full stroke range is $\mathbf{1}$ turn (360 degrees) and the current position is OFF2 Hex (4082 Decimal) then,
$\left(\frac{4082}{65,535}\right) \times 360$ deg. $=22.4$ degrees

Address Setting (Node ID), Baud Rate and Bus Termination Settings

Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number $1\left(=2^{0}\right)$ and ending with switch number $6\left(=2^{5}\right)$.

$\begin{gathered} \text { DIP-1 } \\ \left(2^{0}\right) \end{gathered}$	DIP-2 (21)	DIP-3 (22)	DIP-4 $\left(2^{3}\right)$	DIP-5 (24)	DIP-6 $\left(2^{5}\right)$	address (decimal)
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	0	2
...	\cdots	\cdots	\cdots	...
1	1	1	1	1	1	63

Baud Rate

The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.

The baud rate can be set using switches 7 \& 8 on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

DIP-7	DIP-8	baud rate
0	0	125 k
1	0	250 k
0	1	500 k
1	1	125 k

Bus Termination

The setting of the internal bus termination resistor may be specified upon order or manually changed by the end user at the time of installation.

The bus termination resistor is activated setting switches $1 \& 2$ on the 2-pole DIP switch (located on the internal DeviceNET controller board) to the "ON" position.

