PT9DN
 Heavy Industrial • DeviceNET ${ }^{\oplus}$

Linear Position/Velocity to 550 inches (1400 cm)
Aluminum or Stainless Steel Enclosure Options
VLS Option To Prevent Free-Release Damage
IP67 • NEMA 6 Protection

GENERAL

Full Stroke Range Options (on this datasheet)	$0-75$ to 0-550 inches
Electrical Signal Interface	CANbus ISO 11898
Protocol	DeviceNET Version 2.0
Accuracy	$\pm 0.10 \%$ full stroke
Repeatability	$\pm 0.02 \%$ full stroke
Resolution	$\pm 0.003 \%$ full stroke

| Measuring Cable Options | nylon-coated stainless steel or thermoplastic |
| :--- | ---: | ---: |
| Enclosure Material | powder-painted aluminum or stainless steel |
| Sensor | plastic-hybrid precision potentiometer |
| Potentiometer Cycle Life | $\geq 250,000$ cycles |
| Maximum Retraction Acceleration | see ordering information |
| Maximum Velocity | see ordering information |
| Weight, Aluminum (Stainless Steel) Enclosure | 8 lbs. (16 lbs.), max. |

ELECTRICAL

Input Voltage	bus powered
Input Current	40 mA max.
Address Setting/Node ID	0...63 set via DIP switches (default: 63)
Baud Rate	125K, 250 K or 500 K set via DIP switches
EDS File	available @ http://celesco.com/downloads
ENVIRONMENTAL	
Enclosure	NEMA 4/4X/6, IP 67
Operating Temperature	-40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$
Vibration	up to 10 g to 2000 Hz maximum

The PT9DN communicates via DeviceNET protocol with programmable controllers in factories and harsh environments requiring linear position measurements in ranges up to 550".

As a member of Celesco's innovative family of NEMA 4 rated cable-extension transducers, the PT9DN installs in minutes by simply mounting it's body to a fixed surface and attaching it's cable to the movable object. Perfect parallel alignment not required.

Output Signal:

I/O Format:

Data Field

*Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable.

The CMC is a 16 -bit value that occupies the first two bytes $\left(B_{0}\right.$ and $\left.B_{1}\right)$ of the data field. B_{0} is the LSB (least significant byte) and B_{1} is the MSB (most significant byte).

The CMC starts at 0000 H with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at FFFFH. This holds true for all ranges.

**Full Stroke Range

The Full Stroke Range (FSR) is a 16 -bit value in the data field that expresses the full range of the sensor in inches. This value can be used to convert the actual count to units of measurement should the application require it.

The full stroke measurement range occupies the second two bytes $\left(B_{2}\right.$ and $\left.B_{3}\right)$ of the data field.
B_{2} is the LSB (least significant byte) and B_{3} is the MSB (most significant byte).

This value is expressed in inches.
Example:

Converting CMC to Inches

If required, the CMC can easily be converted to a linear measurement expressed in inches instead of just counts.

This is accomplished by first dividing the CMC by 65,535 (total counts over the range) and then multiplying that value by the FSR:

$$
\left(\frac{C M C}{65,535}\right) \times \mathrm{FSR}
$$

Example:
If the full stroke range is 30 inches and the current position is OFF2 Hex (4082 Decimal) then,
$\left(\frac{4082}{65,535}\right) \times 30.00$ inches $=1.87$ inches

Address Setting (Node ID), Baud Rate and Bus Termination Settings

Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8 -pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number $\mathbf{1}\left(=2^{0}\right)$ and ending with switch number $6\left(=2^{5}\right)$.

DIP-1 $\left(2^{\circ}\right)$	DIP-2 $\left(2^{1}\right)$	DIP-3 $\left(2^{2}\right)$	DIP-4 (23)	DIP-5 (24)	DIP-6 $\left(2^{5}\right)$	address (decimal)
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	0	2
\cdots	\ldots	\cdots	\cdots	...
1	1	1	1	1	1	63

Baud Rate

The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.

The baud rate can be set using switches $7 \& 8$ on the 8 -pole DIP switch found on the DeviceNET controller board located inside the transducer.

Bus Termination

The setting of the internal bus termination resistor may be specified upon order or manually changed by the end user at the time of installation.

The bus termination resistor is activated setting switches $1 \& 2$ on the 2-pole DIP switch (located on the internal DeviceNET controller board) to the "ON" position.

DeviceNET Controller Board and DIP Switch Location

celesco
celesco.com•info@celesco.com

Fig. 1 - Outline Drawing (18 oz. cable tension only)

(A) DIMENSION (INCHES)

	MEASURING CA BLE		
RANGE	$\varnothing .034$ in.	$\varnothing .047$ in.	$\varnothing .062$ in.
75	0.22	0.29	0.37
100	0.29	0.39	0.49
150	0.44	0.59	0.73
200	0.58	0.79	0.98
250	0.73	0.98	1.22
300	0.88	1.18	1.47
350	1.02	1.38	1.71
400	1.17	1.57	1.96
450	1.31	1.77	n / a
500	1.46	1.97	n / a
550	1.61	n / a	n / a

DIMENSIONS ARE IN INCHES [MM] tolerances are 0.03 IN . [0.5 MM] unless otherwise noted.

* tolerance $=+.005-.001[+.13-.03]$
** tolerance $=+.005-.005[+.13-.13]$

VLS Option - Free Release Protection

The patented Celesco Velocity Limiting System (VLS) is an option for PT9000 Series cable extension transducers that limits cable retraction to a safe 40 to 55 inches per second for the single spring option and 40 to 80 inches per second for the higher tension dual spring option.

The VLS option prevents the measuring cable from ever reaching a damaging velocity during an accidental free release. This option is ideal for mobile applications that require frequent cable disconnection and reconnection. It prevents expensive unscheduled downtime due to accidental cable mishandling or attachment failure.

How To Configure Model Number for VLS Option:
VLS9DN -
creating VLS model number (example)...

1. select PT9DN model
2. remove "PT" from the model number
3. add "VLS"
4. completed model number !

PT9DN-200-N34-26...
X 9DN-200-N34-26...
VLS + DN-200-N34-26...
VLSDN-200-N34-26...

Ordering Information:

Model Number:

Sample Model Number:
PT9DN - 200-AL - N34-26-FR - 500 - TR - SC5
order code:
${ }^{3}$

(B) range:	200 inches
(A) enclosure	aluminum
(B) measuring cable:	. 034 nylon-coated stainless
C measuring cable tension:	18 oz.
(D) cable exit:	front (horizontal)
(B) baud rate:	500 k bits/sec.
(F) terminating resistor:	yes
(G) electrical connection:	5-meter cordset with straigh

Full Stroke Range:

B order code:	75	100	150	200	250	300	350	400	450*	500*	550*
full stroke range, min:	75 in.	$100 \mathrm{in}$.	150 in.	200 in.	$250 \mathrm{in}$.	$300 \mathrm{in}$.	$350 \mathrm{in}$.	400 in.	450 in.	500 in .	550 in.

Enclosure Material:

A order code:
AL
SS powder-painted aluminum

303 stainless

Measuring Cable:

B order code:	N34	S47

Measuring Cable Tension:

C order code:	26		52	
tension (30\%) :	18 oz.		36 oz .	
enclosure material:	aluminum	stainless steel	aluminum	stainless steel
max. acceleration:	1 G	. 33 G	5 G	2 G
max. velocity:	60 inches/sec	20 inches/sec	200 inches/sec	80 inches/sec
		standard housing see fig 1.		dual-spring housing see fig 2.

Cable Exit:

(1) Forder code:

Baud Rate:

(F) order code:	125	250	500
	25 kbaud	250 kbaud	500 kbaud

Terminating Resistor:

B order code:
terminating resistor

NR
no terminating resistor

Electrical Connection:

VLS Option - Free Release Protection

The patented Celesco Velocity Limiting System (VLS) is an option for PT9000 Series cable extension transducers that limits cable retraction to a safe 40 to 55 inches per second for the single spring option and 40 to 80 inches per second for the higher tension dual spring option.

The VLS option prevents the measuring cable from ever reaching a damaging velocity during an accidental free release. This option is ideal for mobile applications that require frequent cable disconnection and reconnection. It prevents expensive unscheduled downtime due to accidental cable mishandling or attachment failure.

How To Configure Model Number for VLS Option:
VLS9DN - \qquad $=-$
creating VLS model number (example)...

1. select PT9DN model

PT9DN-200-N34-26...
2. remove "PT" from the model number
3. add "VLS" VLS + DN-200-N34-26...
4. completed model number !

Fig. 2 - Outline Drawing (36 oz. cable tension only)

dIMENSIONS ARE IN INCHES [MM]
tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

	MEASURING CABLE		
RANGE	$\varnothing .034$ in.	$\varnothing .047$ in.	$\varnothing .062$ in.
75	0.22	0.29	0.37
100	0.29	0.39	0.49
150	0.44	0.59	0.73
200	0.58	0.79	0.98
250	0.73	0.98	1.22
300	0.88	1.18	1.47
350	1.02	1.38	1.71
400	1.17	1.57	1.96
450	1.31	1.77	n/a
500	1.46	1.97	n/a
550	1.61	n / a	n / a

* tolerance $=+.005-.001[+.13-.03]$
** tolerance $=+.005-.005[+.13-.13]$

