

The LDE differential low pressure sensors are based on thermal flow measurement of gas through a micro-flow channel integrated within the sensor chip. The innovative LDE technology features superior sensitivity especially for ultra low pressures. The extremely low gas flow through the sensor ensures high immunity to dust contamination, humidity and long tubing compared to other flow-based pressure sensors.



#### **Features**

- Ultra-low pressure ranges from 25 to 500 Pa (0.1 to 2 inH<sub>2</sub>O)
- Pressure sensor based on thermal microflow measurement
- High flow impedance
  - very low flow-through leakage
  - high immunity to dust and humidity
  - no loss in sensitivity using long tubing
- Calibrated and temperature compensated
- Unique offset autozeroing feature ensuring superb long-term stability
- Offset accuracy better than 0.2% FS
- Total accuracy better than 0.5% FS typical
- On-chip temperature sensor
- Analog output and digital SPI interface
- No position sensitivity

#### Certificates

- Quality Management System according to EN ISO 13485 and EN ISO 9001
- RoHS and REACH compliant

### Media compatibility

Air and other non-corrosive gases

### **Applications**

#### Medical

- Ventilators
- Spirometers
- CPAP
- Sleep diagnostic equipment
- Nebulizers
- Oxygen conservers/concentrators
- Insufflators/endoscopy

#### Industrial

- HVAC
  - VAV
  - Filter monitoring
  - Burner control
- Fuel cells
- Gas leak detection
- Gas metering
- Fume hood
- Instrumentation
- Security systems





## Maximum ratings

| Parameter                          |      | Min. | Max. | Unit            |
|------------------------------------|------|------|------|-----------------|
| Supply voltage V <sub>S</sub>      | LDE3 | 2.70 | 3.60 |                 |
|                                    | LDE6 | 4.75 | 5.25 | V <sub>DC</sub> |
| Output current                     |      |      | 1    | mA              |
| Soldering recommendations          |      |      |      |                 |
| Reflow soldering, peak temperature |      |      | 245  | <u></u>         |
| Wave soldering, pot temperature    |      |      | 260  | °C              |
| Hand soldering, tip temperature    |      |      | 370  | °C              |
| Temperature ranges                 |      |      |      |                 |
| Compensated                        |      | 0    | +70  | <u>°C</u>       |
| Operating                          |      | -20  | +80  | °C              |
| Storage                            |      | -40  | +80  | <u>°C</u>       |
| Humidity limits (non-condensing)   |      |      | 97   | %RH             |
| Vibration (1)                      |      |      | 20   | g               |
| Mechanical shock (2)               |      |      | 500  | g               |

### Pressure sensor characteristics

| Part no. | Operating pressure                              | Proof pressure (3) | Burst pressure (3) |
|----------|-------------------------------------------------|--------------------|--------------------|
| LDES025U | 025 Pa / 00.25 mbar (0.1 inH <sub>2</sub> O)    |                    |                    |
| LDES050U | 050 Pa / 00.5 mbar (0.2 inH <sub>2</sub> O)     |                    |                    |
| LDES100U | 0100 Pa / 01 mbar (0.4 inH <sub>2</sub> O)      |                    |                    |
| LDES250U | 0250 Pa / 02.5 mbar (1 inH <sub>2</sub> O)      | •                  |                    |
| LDES500U | 0500 Pa / 05 mbar (2 inH <sub>2</sub> O)        | 2 bar              | 5 bar              |
| LDES025B | 0±25 Pa / 0±0.25 mbar (±0.1 inH <sub>2</sub> O) | (30 psi)           | (75 psi)           |
| LDES050B | 0±50 Pa / 0±0.5 mbar (±0.2 inH <sub>2</sub> O)  | •                  |                    |
| LDES100B | 0±100 Pa / 0±1 mbar (±0.4 inH <sub>2</sub> O)   | •                  |                    |
| LDES250B | 0±250 Pa / 0±2.5 mbar (±1 inH <sub>2</sub> O)   | •                  |                    |
| LDES500B | 0±500 Pa / 0±5 mbar (±2 inH <sub>2</sub> O)     | ·<br>              |                    |

### Gas correction factors (4)

| Gas type                          | Correction factor |
|-----------------------------------|-------------------|
| Dry air                           | 1.0               |
| Oxygen (O <sub>2</sub> )          | 1.07              |
| Nitrogen (N <sub>2</sub> )        | 0.97              |
| Argon (Ar)                        | 0.98              |
| Carbon dioxide (CO <sub>2</sub> ) | 0.56              |

#### Specification notes

- (1) Sweep 20 to 2000 Hz, 8 min, 4 cycles per axis, MIL-STD-883, Method 2007.
- (2) 5 shocks, 3 axes, MIL-STD-883E, Method 2002.4.
- (3) The max. common mode pressure is  $5\ \text{bar}$ .

(4) For example with a LDES500... sensor measuring  ${\rm CO_2}$  gas, at full-scale output the actual pressure will be:

 $\Delta P_{\rm eff}$  =  $\Delta P_{\rm Sensor}$  x gas correction factor = 500 Pa x 0.56 = 280 Pa  $\Delta P_{\rm eff}$  = True differential pressure

 $\Delta P_{Sensor}$  = Differential pressure as indicated by output signal



## LDE...6... Performance characteristics (5)

 $(V_s = 5.0 V_{DC}, T_A = 20 \, ^{\circ}\text{C}, P_{Abs} = 1 \, \text{bara, calibrated in air, analog and digital output signals are } \frac{\text{non-ratiometric}}{1.00 \, ^{\circ}\text{C}} = 1.00 \, ^{\circ}\text{C}$ 

#### 25 Pa and 50 Pa devices

| 20 Ta and 00 Ta acvices             |                   |            |       |       |                 |                                              |
|-------------------------------------|-------------------|------------|-------|-------|-----------------|----------------------------------------------|
| Parameter                           |                   |            | Min.  | Typ.  | Max.            | Unit                                         |
| Noise level (RMS)                   |                   |            |       | ±0.01 |                 | Pa                                           |
| Offset warm-up shift                |                   |            |       |       | less than noise |                                              |
| Offset long term stability (6)      |                   |            |       | ±0.05 | ±0.1            | Pa/year                                      |
| Offset repeatability                |                   |            |       | ±0.01 |                 | Pa                                           |
| Span repeatability (9, 10)          |                   |            |       | ±0.25 |                 | % of reading                                 |
| Current consumption (no load        | d) <sup>(7)</sup> |            |       | 7     | 8               | mA                                           |
| Response time (t <sub>63</sub> )    |                   |            |       | 5     |                 | ms                                           |
| Power-on time                       |                   |            |       |       | 25              | ms                                           |
| Digital output                      |                   |            |       |       |                 |                                              |
| Parameter                           |                   |            | Min.  | Тур.  | Max.            | Unit                                         |
| Scale factor (digital output)       | 025/0             | .±25 Pa    |       | 1200  |                 | counts/Pa                                    |
|                                     | 050/0             | .±50 Pa    |       | 600   |                 | counts/Pa                                    |
| Zero pressure offset accuracy       | (9)               |            |       | ±0.1  | ±0.2            | %FSS                                         |
| Span accuracy (9, 10)               |                   |            |       | ±0.4  | ±0.75           | % of reading                                 |
| Thermal effects                     | Offset            | 555 °C     |       |       | ±0.2            | %FSS                                         |
|                                     |                   | 070 °C     |       |       | ±0.4            | %FSS                                         |
|                                     | Span              | 555 °C     |       | ±1    | ±1.75           | % of reading                                 |
|                                     |                   | 070 °C     |       | ±2    | ±2.75           | % of reading                                 |
| Analog output (unidirect            | ional devices)    |            |       |       |                 |                                              |
| Parameter                           |                   |            | Min.  | Тур.  | Max.            | Unit                                         |
| Zero pressure offset <sup>(9)</sup> |                   |            | 0.49  | 0.50  | 0.51            | V                                            |
| Full scale output                   |                   |            | 0.43  | 4.50  | 0.01            | <del>v</del>                                 |
| Span accuracy (9, 10)               |                   |            |       | ±0.4  | ±0.75           | % of reading                                 |
| Thermal effects                     | Offset            | 555 °C     |       |       | ±15             | mV                                           |
| Thormal Circuts                     | 011361            | 070 °C     |       |       | ±30             | mV                                           |
|                                     | Span              | 555 °C     |       | ±1.25 | ±2              | % of reading                                 |
|                                     | 552.1             | 070 °C     |       | ±2    | ±2.75           | % of reading                                 |
| Analog output (bidirection          | onal devices)     |            |       |       |                 | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |
| Parameter                           | 401.000,          |            | Min.  | Тур.  | Max.            | Unit                                         |
| Zero pressure offset (9)            |                   |            | 2.49  | 2.50  | 2.51            |                                              |
| Output                              | at max. specifie  | d nressure | ۷.٠٠٥ | 4.50  | 2.01            | <del>V</del>                                 |
| - Catput                            | at min. specified |            |       | 0.50  | <u></u>         | <del>V</del>                                 |
| Span accuracy (9, 10)               | at min specified  | _ p1000u10 |       | ±0.4  | ±0.75           | % of reading                                 |
| Thermal effects                     | Offset            | 555 °C     |       |       | ±15             | mV                                           |
|                                     | J                 | 070 °C     |       |       | ±30             | mV                                           |
|                                     | Span              | 555 °C     |       | ±1.25 | ±2              | % of reading                                 |
|                                     | Opan              | 070 °C     |       | ±2    | ±2.75           | % of reading                                 |
|                                     |                   | 070        |       |       | -2.70           | // Or reading                                |

#### Specification notes (cont.)

(5) The sensor is calibrated with a common mode pressure of 1 bar absolute. Due to the mass flow based measuring principle, variations in absolute common mode pressure need to be compensated according to the following formula:

$$\Delta P_{\text{eff}} = \Delta P_{\text{Sensor}} \times 1 \text{ bara}/P_{\text{abs}}$$

 $\Delta P_{eff}$  = True differential pressure

 $\Delta_{\rm Sensor}^{\rm eff}$  = Differential pressure as indicated by output voltage  ${\rm P}_{\rm she}$  = Current absolute common mode pressure

- (6) Figure based on accelerated lifetime test of 10000 hours at 85 °C biased burn-in.
- (7) Please contact First Sensor for low power options.
- (8) The digital output signal is a signed, two complement integer. Negative pressures will result in a negative output
- (9) Zero pressure offset accuracy and span accuracy are uncorrelated uncertainties. They can be added according to the principles of error propagation.
- (10) Span accuracy below 10% of full scale is limited by the intrinsic noise of the sensor.



## LDE...6... Performance characteristics (cont.) (5)

 $(V_s = 5.0 V_{DC}, T_A = 20 \, ^{\circ}\text{C}, P_{Abs} = 1 \, \text{bara, calibrated in air, analog and digital output signals are } \frac{\text{non-ratiometric}}{1.00 \, ^{\circ}\text{C}} = 1.00 \, ^{\circ}\text{C}$ 

#### 100 Pa, 250 Pa and 500 Pa devices

| ,                                        |                   |            |      |               |                 |                    |
|------------------------------------------|-------------------|------------|------|---------------|-----------------|--------------------|
| Parameter                                |                   |            | Min. | Тур.          | Max.            | Unit               |
| Noise level (RMS)                        |                   |            |      | ±0.01         |                 | %FSS               |
| Offset warm-up shift                     |                   |            |      |               | less than noise |                    |
| Offset long term stability (6)           |                   |            |      | ±0.05         | ±0.1            | %FSS/year          |
| Offset repeatability (11)                |                   |            |      | ±0.02         | <del></del>     | Pa                 |
| Span repeatability (9, 10)               |                   |            |      | ±0.25         |                 | % of reading       |
| Current consumption (no load             | d) <sup>(7)</sup> |            |      | 7             | 8               | mA                 |
| Response time (t <sub>63</sub> )         |                   |            |      | 5             |                 | ms                 |
| Power-on time                            |                   |            |      | <del></del> - | 25              | ms                 |
| Digital output                           |                   |            |      |               |                 |                    |
| Parameter                                |                   |            | Min. | Тур.          | Max.            | Unit               |
| Scale factor (digital output) (8         | 0100/0            | ±100 Pa    |      | 300           |                 | counts/Pa          |
|                                          |                   | ±250 Pa    |      | 120           |                 | counts/Pa          |
|                                          |                   | ±500 Pa    |      | 60            |                 | counts/Pa          |
| Zero pressure offset accuracy            |                   |            |      | ±0.05         | ±0.1            | %FSS               |
| Span accuracy (9, 10)                    |                   |            |      | ±0.4          | ±0.75           | % of reading       |
| Thermal effects                          | Offset            | 555 °C     | -    |               | ±0.1            | %FSS               |
|                                          |                   | 070 °C     |      |               | ±0.2            | %FSS               |
|                                          | Span              | 555 °C     |      | ±1            | ±1.75           | % of reading       |
|                                          |                   | 070 °C     |      | ±2            | ±2.75           | % of reading       |
| Analog output (unidirect                 | ional devices)    |            |      |               |                 |                    |
| Parameter                                | ,                 |            | Min. | Тур.          | Max.            | Unit               |
| Zero pressure offset <sup>(9)</sup>      |                   |            | 0.49 | 0.50          | 0.51            |                    |
| Full scale output                        |                   |            |      | 4.50          |                 | V                  |
| Span accuracy <sup>(9, 10)</sup>         |                   |            | -    | ±0.4          | ±0.75           | % of reading       |
| Thermal effects                          | Offset            | 555 °C     |      |               | ±10             | mV                 |
|                                          |                   | 070 °C     |      |               | ±12             | mV                 |
|                                          | Span              | 555 °C     | -    | ±1            | ±1.75           | % of reading       |
|                                          | -                 | 070 °C     |      | ±2            | ±2.75           | % of reading       |
| Analog output (bidirection               | onal devices)     |            |      | <u> </u>      | <u> </u>        |                    |
| Parameter                                |                   |            | Min. | Тур.          | Max.            | Unit               |
| Zero pressure offset (9)                 |                   |            | 2.49 | 2.50          | 2.51            |                    |
| Zero pressure onset                      | at max. specifie  | d pressure |      | 4.50          |                 | V                  |
|                                          |                   |            |      | 0.50          |                 | V                  |
| Output                                   | at min. specified | pressure   |      |               |                 |                    |
| Output                                   |                   | pressure   |      | ±0.4          | ±0.75           | % of reading       |
| Output                                   |                   | 555 °C     |      | ±0.4          | ±0.75<br>±10    | % of reading<br>mV |
| Output  Span accuracy <sup>(9, 10)</sup> | at min. specified |            |      | ±0.4          |                 |                    |
| Output  Span accuracy (9, 10)            | at min. specified | 555 °C     |      | ±0.4<br>±1    | ±10             | mV                 |

#### Specification notes (cont.)

(5) The sensor is calibrated with a common mode pressure of 1 bar absolute. Due to the mass flow based measuring principle, variations in absolute common mode pressure need to be compensated according to the following formula:

$$\Delta P_{\text{eff}} = \Delta P_{\text{Sensor}} \times 1 \text{ bara/P}_{\text{abs}}$$

 $\Delta P_{\text{eff}}$  = True differential pressure

 $\Delta_{\rm Sensor}^{\rm eff}$  = Differential pressure as indicated by output voltage  $P_{\rm she}$  = Current absolute common mode pressure

- (6) Figure based on accelerated lifetime test of 10000 hours at 85 °C biased burn-in.
- (7) Please contact First Sensor for low power options.
- (8) The digital output signal is a signed, two complement integer. Negative pressures will result in a negative output
- (9) Zero pressure offset accuracy and span accuracy are uncorrelated uncertainties. They can be added according to the principles of error propagation.
- (10) Span accuracy below 10% of full scale is limited by the intrinsic noise of the sensor.
- (11) Typical value for 250 Pa sensors.



## LDE...3... Performance characteristics (5)

 $(V_s=3.0\ V_{DC},\ T_A=20\ ^{\circ}C,\ P_{Abs}=1\ bara,\ calibrated\ in\ air,\ analog\ and\ digital\ output\ signals\ are\ \underline{non-ratiometric}$  to  $V_sV_{DC}$ 

#### 25 Pa and 50 Pa devices

| Parameter                                                                                                                                                                                   |                                                                |                                                              | Min.         | Тур.                                                     | Max.                                                                  | Unit                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|--------------|----------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Noise level (RMS)                                                                                                                                                                           |                                                                |                                                              |              | ±0.01                                                    |                                                                       | Pa                                                                                                         |
| Offset warm-up shift                                                                                                                                                                        |                                                                |                                                              |              |                                                          | less than noise                                                       |                                                                                                            |
| Offset long term stability (6)                                                                                                                                                              |                                                                |                                                              |              | ±0.05                                                    | ±0.1                                                                  | Pa/year                                                                                                    |
| Offset repeatability                                                                                                                                                                        |                                                                |                                                              |              | ±0.01                                                    |                                                                       | Pa                                                                                                         |
| Span repeatability (9, 10)                                                                                                                                                                  |                                                                |                                                              |              | ±0.25                                                    |                                                                       | % of reading                                                                                               |
| Current consumption (no load                                                                                                                                                                | d) <sup>(7)</sup>                                              |                                                              |              | 14                                                       | 16                                                                    | mA                                                                                                         |
| Response time (t <sub>63</sub> )                                                                                                                                                            |                                                                |                                                              |              | 5                                                        |                                                                       | ms                                                                                                         |
| Power-on time                                                                                                                                                                               |                                                                |                                                              |              |                                                          | 25                                                                    | ms                                                                                                         |
| Digital output                                                                                                                                                                              |                                                                |                                                              |              |                                                          |                                                                       |                                                                                                            |
| Parameter                                                                                                                                                                                   |                                                                |                                                              | Min.         | Typ.                                                     | Max.                                                                  | Unit                                                                                                       |
| Scale factor (digital output)                                                                                                                                                               | 025/0                                                          | .±25 Pa                                                      |              | 1200                                                     |                                                                       | counts/Pa                                                                                                  |
|                                                                                                                                                                                             | 050/0                                                          | .±50 Pa                                                      |              | 600                                                      |                                                                       | counts/Pa                                                                                                  |
| Zero pressure offset accuracy                                                                                                                                                               | (9)                                                            |                                                              |              | ±0.1                                                     | ±0.2                                                                  | %FSS                                                                                                       |
| Span accuracy (9, 10)                                                                                                                                                                       |                                                                |                                                              |              | ±0.4                                                     | ±0.75                                                                 | % of reading                                                                                               |
| Thermal effects                                                                                                                                                                             | Offset                                                         | 555 °C                                                       |              |                                                          | ±0.2                                                                  | %FSS                                                                                                       |
|                                                                                                                                                                                             |                                                                | 070 °C                                                       |              |                                                          | ±0.4                                                                  | %FSS                                                                                                       |
|                                                                                                                                                                                             |                                                                |                                                              |              |                                                          |                                                                       | % of reading                                                                                               |
|                                                                                                                                                                                             | Span                                                           | 555 °C                                                       |              | ±1                                                       | ±1.75                                                                 | % or reading                                                                                               |
|                                                                                                                                                                                             | Span                                                           | 555 °C<br>070 °C                                             |              | ±1<br>±2                                                 | ±1./5<br>±2.75                                                        | % of reading                                                                                               |
| Analog output (unidirect                                                                                                                                                                    |                                                                |                                                              |              |                                                          |                                                                       |                                                                                                            |
| • .                                                                                                                                                                                         |                                                                |                                                              | Min.         |                                                          |                                                                       |                                                                                                            |
| Parameter                                                                                                                                                                                   |                                                                |                                                              | Min.<br>0.29 | ±2                                                       | ±2.75                                                                 | % of reading                                                                                               |
| Parameter  Zero pressure offset <sup>(9)</sup>                                                                                                                                              |                                                                |                                                              |              | ±2<br>Typ.                                               | ±2.75                                                                 | % of reading Unit                                                                                          |
| Parameter  Zero pressure offset <sup>(9)</sup> Full scale output                                                                                                                            |                                                                |                                                              |              | ±2  Typ.  0.30                                           | ±2.75                                                                 | % of reading  Unit  V                                                                                      |
| Parameter  Zero pressure offset <sup>(9)</sup> Full scale output  Span accuracy <sup>(9, 10)</sup>                                                                                          |                                                                |                                                              |              | ±2  Typ.  0.30  2.70                                     | ±2.75  Max. 0.31                                                      | % of reading  Unit  V  V                                                                                   |
| Parameter  Zero pressure offset <sup>(9)</sup> Full scale output  Span accuracy <sup>(9, 10)</sup>                                                                                          | tional devices)                                                | 070 °C                                                       |              | ±2  Typ.  0.30  2.70                                     | ±2.75  Max. 0.31  ±0.75                                               | % of reading  Unit  V  V  % of reading                                                                     |
| Parameter  Zero pressure offset <sup>(9)</sup> Full scale output  Span accuracy <sup>(9, 10)</sup>                                                                                          | tional devices)                                                | 070 °C                                                       |              | ±2  Typ.  0.30  2.70                                     | ±2.75  Max.  0.31  ±0.75  ±15                                         | % of reading  Unit  V  V  % of reading  mV                                                                 |
| Analog output (unidirect Parameter Zero pressure offset (9) Full scale output Span accuracy (9, 10) Thermal effects                                                                         | tional devices) Offset                                         | 070 °C<br>555 °C<br>070 °C                                   |              | ±2  Typ.  0.30  2.70  ±0.4                               | ±2.75  Max.  0.31  ±0.75  ±15  ±30                                    | % of reading  Unit  V  V  % of reading  mV  mV                                                             |
| Parameter  Zero pressure offset <sup>(9)</sup> Full scale output  Span accuracy <sup>(9, 10)</sup>                                                                                          | Offset Span                                                    | 070 °C<br>555 °C<br>070 °C<br>555 °C                         |              | ±2  Typ. 0.30 2.70 ±0.4  ±1.25                           | ±2.75  Max.  0.31  ±0.75  ±15  ±30  ±2                                | % of reading  Unit  V  V  % of reading  mV  mV  % of reading                                               |
| Parameter  Zero pressure offset <sup>(9)</sup> Full scale output  Span accuracy <sup>(9, 10)</sup> Thermal effects                                                                          | Offset Span                                                    | 070 °C<br>555 °C<br>070 °C<br>555 °C                         |              | ±2  Typ. 0.30 2.70 ±0.4  ±1.25                           | ±2.75  Max.  0.31  ±0.75  ±15  ±30  ±2                                | % of reading  Unit  V  V  % of reading  mV  mV  % of reading                                               |
| Parameter  Zero pressure offset (9)  Full scale output  Span accuracy (9,10)  Thermal effects  Analog output (bidirection Parameter                                                         | Offset Span                                                    | 070 °C<br>555 °C<br>070 °C<br>555 °C                         | 0.29         | ±2  Typ. 0.30 2.70 ±0.4  ±1.25 ±2                        | ±2.75  Max. 0.31  ±0.75 ±15 ±30 ±2 ±2.75                              | % of reading  Unit  V  V  % of reading  mV  mV  % of reading  % of reading                                 |
| Parameter  Zero pressure offset (9)  Full scale output  Span accuracy (9,10)  Thermal effects  Analog output (bidirection  Parameter  Zero pressure offset (9)                              | Offset Span                                                    | 070 °C  555 °C  070 °C  555 °C  070 °C                       | 0.29<br>Min. | ±2  Typ. 0.30 2.70 ±0.4  ±1.25 ±2  Typ.                  | ±2.75  Max.  0.31  ±0.75  ±15  ±30  ±2  ±2.75  Max.                   | % of reading  Unit  V  V  % of reading  mV  mV  % of reading  % of reading  % of reading                   |
| Parameter  Zero pressure offset (9)  Full scale output  Span accuracy (9,10)  Thermal effects  Analog output (bidirection  Parameter  Zero pressure offset (9)  Output                      | Offset Span onal devices)                                      | 555 °C<br>070 °C<br>555 °C<br>070 °C                         | 0.29<br>Min. | ±2  Typ.  0.30  2.70  ±0.4  ±1.25  ±2  Typ.  1.50        | ±2.75  Max.  0.31  ±0.75  ±15  ±30  ±2  ±2.75  Max.                   | % of reading  Unit  V  V % of reading  mV  mV % of reading % of reading Unit  V                            |
| Parameter  Zero pressure offset (9)  Full scale output  Span accuracy (9,10)  Thermal effects  Analog output (bidirection  Parameter  Zero pressure offset (9)  Output                      | Offset Span onal devices) at max. specifie                     | 555 °C<br>070 °C<br>555 °C<br>070 °C                         | 0.29<br>Min. | ±2  Typ. 0.30 2.70 ±0.4  ±1.25 ±2  Typ. 1.50 2.70        | ±2.75  Max.  0.31  ±0.75  ±15  ±30  ±2  ±2.75  Max.                   | % of reading  Unit  V  V  % of reading  mV  wo of reading  for reading  Unit  V  V                         |
| Parameter  Zero pressure offset (9)  Full scale output  Span accuracy (9, 10)  Thermal effects  Analog output (bidirection                                                                  | Offset Span onal devices) at max. specifie                     | 555 °C<br>070 °C<br>555 °C<br>070 °C                         | 0.29<br>Min. | ±2  Typ.  0.30 2.70 ±0.4  ±1.25 ±2  Typ.  1.50 2.70 0.30 | ±2.75  Max.  0.31  ±0.75  ±15  ±30  ±2  ±2.75  Max.  1.51             | % of reading  Unit  V  V  % of reading  mV  wo of reading  for reading  Unit  V  V  V                      |
| Parameter  Zero pressure offset (9)  Full scale output  Span accuracy (9,10)  Thermal effects  Analog output (bidirectic  Parameter  Zero pressure offset (9)  Output  Span accuracy (9,10) | Offset Span onal devices)  at max. specified at min. specified | 555 °C<br>070 °C<br>555 °C<br>070 °C                         | 0.29<br>Min. | ±2  Typ.  0.30 2.70 ±0.4  ±1.25 ±2  Typ.  1.50 2.70 0.30 | ±2.75  Max.  0.31  ±0.75  ±15  ±30  ±2  ±2.75  Max.  1.51             | % of reading  Unit  V  V  % of reading  mV  mV  % of reading  % of reading  Unit  V  V  V  V  % of reading |
| Parameter  Zero pressure offset (9)  Full scale output  Span accuracy (9,10)  Thermal effects  Analog output (bidirectic  Parameter  Zero pressure offset (9)  Output  Span accuracy (9,10) | Offset Span onal devices)  at max. specified at min. specified | 555 °C  070 °C  555 °C  070 °C  d pressure d pressure 555 °C | 0.29<br>Min. | ±2  Typ.  0.30 2.70 ±0.4  ±1.25 ±2  Typ.  1.50 2.70 0.30 | ±2.75  Max.  0.31  ±0.75  ±15  ±30  ±2  ±2.75  Max.  1.51  ±0.75  ±15 | % of reading  Unit  V  V  % of reading  mV  % of reading  % of reading  Unit  V  V  V  V  % of reading  mV |

#### Specification notes (cont.)

(5) The sensor is calibrated with a common mode pressure of 1 bar absolute. Due to the mass flow based measuring principle, variations in absolute common mode pressure need to be compensated according to the following formula:

$$\Delta P_{eff} = \Delta P_{Sensor} \times 1 bara/P_{abs}$$

 $\Delta P_{\text{eff}}$  = True differential pressure

 $\Delta_{\rm Sensor}^{\rm eff}$  = Differential pressure as indicated by output voltage  $P_{\rm she}$  = Current absolute common mode pressure

- (6) Figure based on accelerated lifetime test of 10000 hours at 85 °C biased burn-in.
- (7) Please contact First Sensor for low power options.
- (8) The digital output signal is a signed, two complement integer. Negative pressures will result in a negative output
- (9) Zero pressure offset accuracy and span accuracy are uncorrelated uncertainties. They can be added according to the principles of error propagation.
- (10) Span accuracy below 10% of full scale is limited by the intrinsic noise of the sensor.



## LDE...3... Performance characteristics (cont.) (5)

 $(V_s=3.0\ V_{DC},\ T_A=20\ ^{\circ}C,\ P_{Abs}=1\ bara,\ calibrated\ in\ air,\ analog\ and\ digital\ output\ signals\ are\ \underline{non-ratiometric}$  to  $V_sV_{DC}$ 

#### 100 Pa, 250 Pa and 500 Pa devices

| ,                                   |                   |                  |      |       |                 |                 |
|-------------------------------------|-------------------|------------------|------|-------|-----------------|-----------------|
| Parameter                           |                   |                  | Min. | Тур.  | Max.            | Unit            |
| Noise level (RMS)                   |                   |                  |      | ±0.01 |                 | %FSS            |
| Offset warm-up shift                |                   |                  |      |       | less than noise |                 |
| Offset long term stability (6)      |                   |                  |      | ±0.05 | ±0.1            | %FSS/year       |
| Offset repeatability (11)           |                   |                  |      | ±0.02 | ; <u></u>       | Pa              |
| Span repeatability (9, 10)          |                   |                  |      | ±0.25 |                 | % of reading    |
| Current consumption (no load        | d) <sup>(7)</sup> |                  |      | 14    | 16              | mA              |
| Response time (t <sub>63</sub> )    |                   |                  |      | 5     |                 | ms              |
| Power-on time                       |                   |                  |      |       | 25              | ms              |
| Digital output                      |                   |                  |      |       |                 |                 |
| Parameter                           |                   |                  | Min. | Тур.  | Max.            | Unit            |
| Scale factor (digital output) (8    | 0100/0.           | ±100 Pa          |      | 300   |                 | counts/Pa       |
|                                     |                   | ±250 Pa          |      | 120   |                 | counts/Pa       |
|                                     |                   | ±500 Pa          |      | 60    |                 | counts/Pa       |
| Zero pressure offset accuracy       | (9)               |                  |      | ±0.05 | ±0.1            | %FSS            |
| Span accuracy (9, 10)               |                   |                  |      | ±0.4  | ±0.75           | % of reading    |
| Thermal effects                     | Offset            | 555 °C           |      |       | ±0.1            | %FSS            |
|                                     |                   | 070 °C           |      |       | ±0.2            | %FSS            |
|                                     | Span              | 555 °C           |      | ±1    | ±1.75           | % of reading    |
|                                     |                   | 070 °C           |      | ±2    | ±2.75           | % of reading    |
| Analog output (unidirect            | ional devices)    |                  |      |       |                 |                 |
| Parameter                           |                   |                  | Min. | Тур.  | Max.            | Unit            |
| Zero pressure offset <sup>(9)</sup> |                   |                  | 0.29 | 0.30  | 0.31            |                 |
| Full scale output                   |                   |                  |      | 2.70  | <del></del>     |                 |
| Span accuracy (9, 10)               |                   |                  |      | ±0.4  | ±0.75           | % of reading    |
| Thermal effects                     | Offset            | 555 °C           |      |       | ±10             | mV              |
|                                     |                   | 070 °C           |      |       | ±12             | mV              |
|                                     | Span              | 555 °C           |      | ±1    | ±1.75           | % of reading    |
|                                     |                   | 070 °C           |      | ±2    | ±2.75           | % of reading    |
| Analog output (bidirection          | onal devices)     |                  |      |       |                 |                 |
| Parameter                           |                   |                  | Min. | Тур.  | Max.            | Unit            |
| Zero pressure offset (9)            |                   |                  | 1.49 | 1.50  | 1.51            | V               |
| Output                              | at max. specifie  | d pressure       |      | 2.70  |                 |                 |
|                                     | at min. specified |                  |      | 0.30  |                 | V               |
| •                                   |                   |                  |      | ±0.4  | ±0.75           | % of reading    |
| •                                   |                   |                  |      |       |                 |                 |
| Span accuracy <sup>(9, 10)</sup>    | Offset            | 555 °C           |      |       | ±10             | mV              |
|                                     | Offset            | 555 °C<br>070 °C |      |       | ±10<br>±12      | <u>mV</u><br>mV |
| Span accuracy <sup>(9, 10)</sup>    | Offset<br>Span    |                  |      | ±1    |                 |                 |

#### Specification notes (cont.)

(5) The sensor is calibrated with a common mode pressure of 1 bar absolute. Due to the mass flow based measuring principle, variations in absolute common mode pressure need to be compensated according to the following formula:

$$\Delta P_{\text{eff}} = \Delta P_{\text{Sensor}} \times 1 \text{ bara/P}_{\text{abs}}$$

 $\Delta P_{\text{eff}}$  = True differential pressure

 $\Delta_{\rm Sensor}^{\rm eff}$  = Differential pressure as indicated by output voltage  $P_{\rm she}$  = Current absolute common mode pressure

- (6) Figure based on accelerated lifetime test of 10000 hours at 85 °C biased burn-in.
- (7) Please contact First Sensor for low power options.
- (8) The digital output signal is a signed, two complement integer. Negative pressures will result in a negative output
- (9) Zero pressure offset accuracy and span accuracy are uncorrelated uncertainties. They can be added according to the principles of error propagation.
- (10) Span accuracy below 10% of full scale is limited by the intrinsic noise of the sensor.
- (11) Typical value for 250 Pa sensors.



### Performance characteristics

#### Temperature sensor

| Parameter                     | Min. | Typ. | Max. | Unit      |
|-------------------------------|------|------|------|-----------|
| Scale factor (digital output) |      | 95   |      | counts/°C |
| Non-linearity                 |      | ±0.5 |      | %FS       |
| Hysteresis                    |      | ±0.1 |      | % FS      |

#### Total accuracy (12)

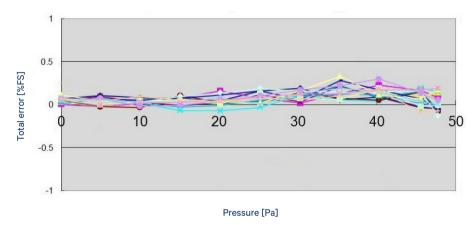



Fig. 1: Typical total accuracy plot of 16 LDE 50 Pa sensors @ 25 °C (typical total accuracy better than 0.5 %FS)

#### Offset long term stability

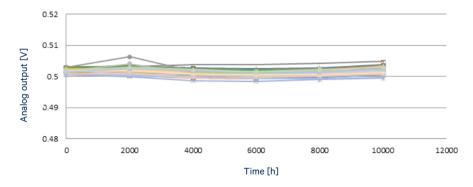



Fig. 2: Offset long term stability for LDE 250 Pa sensors after 10,000 hours @ 85°C powered, equivalent to over 43.5 years @ 25 °C (better than ±2 mV / ±0.125 Pa)

#### Specification notes (cont.)

(12) Total accuracy is the combined error from offset and span calibration, non-linearity, repeatability and pressure hysteresis



### SPI - Serial Peripheral Interface

Note: it is important to adhere to the communication protocol in order to avoid damage to the sensor.

#### Introduction

The LDE serial interface is a high-speed synchronous data input and output communication port. The serial interface operates using a standard 4-wire SPI bus. The LDE device runs in SPI mode 0, which requires the clock line SCLK to idle low (CPOL = 0), and for data to be sampled on the leading clock edge (CPHA = 0). Figure 5 illustrates this mode of operation.

Care should be taken to ensure that the sensor is properly connected to the master microcontroller. Refer to the manufacturer's datasheet for more information regarding physical connections.

### Application circuit

The use of pull-up resistors is generally unnecessary for SPI as most master devices are configured for push-pull mode. If pull-up resistors are required for use with 3 V LDE devices, howeer, they should be greater than 50 k $\Omega$ .

There are, however, some cases where it may be helpful to use  $33\Omega$  series resistors at both ends of the SPI lines, as shown in Figure 3.

Signal quality may be further improved by the addition of a buffer as shown in Figure 4. These cases include multiple slave devices on the same bus segment, using a master device with limited driving capability and long SPI bus lines.

If these series resistors are used, they must be physically placed as close as possible to the pins of the master and slave devices.

### Signal control

The serial interface is enabled by asserting /CS low. The serial input clock, SCLK, is gated internally to begin accepting the input data at MOSI, or sending the output data on MISO. When /CS rises, the data clocked into MOSI is loaded into an internal register.

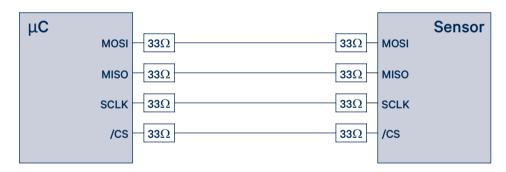



Fig. 3: Application circuit with resistors at both ends of the SPI lines

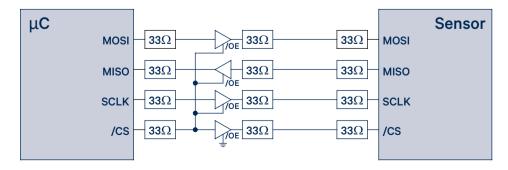



Fig. 4: Application circuit with additional buffer



### SPI - Serial Peripheral Interface (cont.)

Note: it is important to adhere to the communication protocol in order to avoid damage to the sensor.

### Data read – pressure

When powered on, the sensor begins to continuously measure pressure. calculated as follows: To initiate data transfer from the sensor, the following three unique bytes must be written sequentially, MSB first, to the MOSI pin (see Figure 5):

Pressure [Pa]

| Step | Hexadecimal | Binary    | Description                       |
|------|-------------|-----------|-----------------------------------|
| 1    | 0x2D        | B00101101 | Poll current pressure measurement |
| 2    | 0x14        | B00010100 | Send result to data register      |
| 3    | 0x98        | B10011000 | Read data register                |

The entire 16 bit content of the LDE register is then read out on the MISO pin, MSB first, by applying 16 successive clock pulses to SCLK with /CS asserted low. Note that the value of the LSB is held at zero for internal signal processing purposes. This is below the noise threshold of the sensor and thus its fixed value does not affect sensor performance and accuracy.

From the digital sensor output the actual pressure value can be calculated as follows:

For example, for a ±250 Pa sensor (LDES250B...) with a scale factor of 120 a digital output of 30 000 counts (7530'h) calculates to a positive pressure of 250 Pa. Similarly, a digital output of -30 000 counts (8AD0'h) calculates to a negative pressure of -250 Pa.

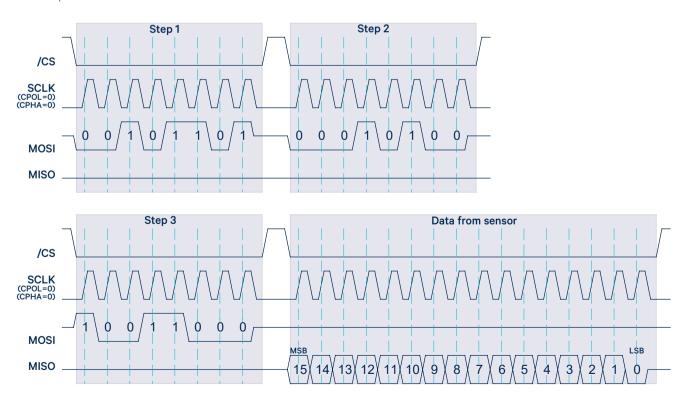



Fig. 5: SPI data transfer



## SPI - Serial Peripheral Interface (cont.)

### Data read – temperature

The on-chip temperature sensor changes 95 counts/°C over the operating range. The temperature data format is 15-bit plus sign in two's complement format. To read temperature, use the following sequence:

| Step | Hexadecimal | Binary    | Description                          |
|------|-------------|-----------|--------------------------------------|
| 1    | 0x2A        | B00101010 | Poll current temperature measurement |
| 2    | 0x14        | B00010100 | Send result to data register         |
| 3    | 0x98        | B10011000 | Read data register                   |

From the digital sensor output, the actual temperature can be calculated as follows:

Temperature [°C] = 
$$\frac{\text{TS - TS}_0 \text{ [counts]}}{\text{Scale factor}_{\text{TS}} \left[ \frac{\text{counts}}{\text{°C}} \right]} + \text{T}_0 \left[ \text{°C} \right]$$

#### where

TS is the actual sensor readout;

 $TS_0$  is the sensor readout at known temperature  $T_0^{(13)}$ ;

Scale factor<sub>TS</sub> = 95 counts/°C

Specification notes (cont.)

(13) To be defined by user. The results show deviation (in  $^{\circ}$ C) from the offset calibrated temperature.

contact@first-sensor.com



## SPI - Serial Peripheral Interface (cont.)

## Interface specification

| CS falling edge to SCLK rising edge setup time   $t_{CSS}$   SCLK falling edge to data valid delay   $t_{DO}$   CLOAD=15 pF   S0    Data valid to SCLK rising edge setup time   $t_{DS}$   30    Data valid to SCLK rising edge hold time   $t_{DH}$   30    SCLK high pulse width   $t_{CL}$   100    SCLK low pulse width   $t_{CSH}$   100      CS rising edge to SCLK rising edge hold time   $t_{CSH}$   30      CS rising edge to SCLK rising edge hold time   $t_{CSH}$   30      CS rising edge to output enable   $t_{CSH}$   30      CS rising edge to output disable   $t_{TR}$   $t_{CLOAD}$   $t_{CLOAD}$   $t_{CLOAD}$   $t_{CS}$   $t_{CLOAD}$   $t_{CS}$   $t_{CS$  | - MHz - %t <sub>ECLK</sub> - ns - µs |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| External master clock input low time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - %t <sub>ECLK</sub><br>- ns<br>- μs |
| External master clock input high time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ns<br>μs                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns<br>μs                             |
| /CS falling edge to SCLK rising edge setup time $t_{CSS}$ $f_{CLK}=4$ MHz $t_{CSI}$ $f_{CLK}=4$ MHz $t_{CSI}$ $f_{CLK}=4$ MHz $t_{CSI}$ $f_{CLK}=4$ MHz $t_{CSI}$ $f_{CLK}=4$ MHz $t_{CLK}=4$ | μs                                   |
| /CS falling edge to SCLK rising edge setup time /CS idle time SCLK falling edge to data valid delay to CLOAD=15 pF 80  Data valid to SCLK rising edge setup time Data valid to SCLK rising edge setup time tos 30  SCLK high pulse width toh SCLK high pulse width toh SCLK low pulse width toh CS rising edge to SCLK rising edge hold time toh CS rising edge to SCLK rising edge hold time toh CS rising edge to output enable toh CS rising edge to output enable toh CS rising edge to output disable toh CC LOAD=15 pF 25  CS rising edge to output disable toh CC LOAD=15 pF 25  DE6 (5 V supply)  Maximum output load capacitance CLOAD RLOAD=50  RLOAD=50  RLOAD=50  RLOAD=50  Ver01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μs                                   |
| SCLK falling edge to data valid delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                    |
| Data valid to SCLK rising edge setup time $t_{DS}$ 30 30 SCLK high pulse width $t_{CH}$ 100 SCLK low pulse width $t_{CL}$ 100 SCLK rising edge hold time $t_{CSH}$ 30 SCLK low pulse width $t_{CL}$ 100 SCLK rising edge to SCLK rising edge hold time $t_{CSH}$ 30 SCLK rising edge to output enable $t_{DV}$ CLOAD=15 pF SC 25 SCLK rising edge to output disable $t_{TR}$ CLOAD=15 pF SC 25 SCLE(5 V supply) SC 25 SC SCLE(5 V supply) SC 26 SCLE(5 V supply) SC 27 SCLE(5 V supply) SC 28 SCLE(5 V supply) SC 29 SCLE(5 V supply) SC 29 SCLE(5 V supply) SCLE(5 V supp                                                                                                                                                                                                                                                 | -<br>-<br>-<br>- ns<br>-             |
| Data valid to SCLK rising edge hold time $t_{DH}$ 30   SCLK high pulse width $t_{CH}$ 100   SCLK low pulse width $t_{CL}$ 100    SCLK low pulse width $t_{CL}$ 100    /CS rising edge to SCLK rising edge hold time $t_{CSH}$ 30    /CS falling edge to output enable $t_{DV}$ $C_{LOAD}=15~pF$ 25   /CS rising edge to output disable $t_{TR}$ $C_{LOAD}=15~pF$ 25   LDE6 (5 V supply)  Maximum output load capacitance $t_{LOAD}$ $t_{LOAD}$ $t_{LOAD}=15~pF$ 200   Input voltage, logic HIGH $t_{LOAD}$ $t_{LOAD}=15~pF$ $t_{LOAD}=15~pF$ 200   Input voltage, logic HIGH $t_{LOAD}=15~pF$ $t_$      | -<br>-<br>- ns<br>-                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>- ns<br>-                       |
| SCLK low pulse width $t_{CL}$ 100 $J_{CS}$ rising edge to SCLK rising edge hold time $J_{CS}$ 30 $J_{CS}$ falling edge to output enable $J_{DV}$ $J_{CLOAD}$ 15 pF $J_{CS}$ 25 $J_{CS}$ 15 pF $J_{CS}$ 25 $J_{CS}$ 16 pF $J_{CS}$ 16 pF $J_{CS}$ 17 pF $J_{CS}$ 18 pF $J_{CS}$ 19 pF $J_{CS}$ 10 p | ns<br>-                              |
| /CS rising edge to SCLK rising edge hold time $t_{CSH}$ 30 $t_{DV}$ CLOAD=15 pF 25 $t_{TR}$ CLOAD=15 pF 26 $t_{TR}$ CLOAD=16 pF 27 $t_{TR}$ CLOAD=16 pF 27 $t_{TR}$ CLOAD=16 pF 28 $t_{TR}$ CLOAD=16  | - ns<br>-                            |
| /CS falling edge to output enable $t_{DV}$ $C_{LOAD} = 15 \text{ pF}$ 25  /CS rising edge to output disable $t_{TR}$ $C_{LOAD} = 15 \text{ pF}$ 25  LDE6 (5 V supply)  Maximum output load capacitance $C_{LOAD}$ $R_{LOAD} = \infty$ , phase margin >55° 200  Input voltage, logic HIGH $V_{IL}$ $0.8 \times V_s$ $V_s + 0.3$ Input voltage, logic LOW $V_{IL}$ $0.2 \times V_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    |
| /CS rising edge to output disable $t_{TR}$ $C_{LOAD}$ =15 pF 25  LDE6 (5 V supply)  Maximum output load capacitance $C_{LOAD}$ $R_{LOAD}$ = $\infty$ , phase margin >55° 200  Input voltage, logic HIGH $V_{IH}$ $0.8 \times V_s$ $V_s$ +0.3  Input voltage, logic LOW $V_{IL}$ $0.2 \times V_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                    |
| LDE6 (5 V supply)     RLOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| Maximum output load capacitance $C_{LOAD}$ $R_{LOAD} = \infty$ , phase margin >55°     200       Input voltage, logic HIGH $V_{IH}$ $0.8 \times V_s$ $V_s + 0.3$ Input voltage, logic LOW $V_{IL}$ $0.2 \times V_s$ Output voltage, logic HIGH $V_{CIL}$ $P_{COAD} = \infty$ $V_{CIL}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                    |
| Input voltage, logic HIGH         V <sub>IH</sub> 0.8×V <sub>s</sub> V <sub>s</sub> +0.3           Input voltage, logic LOW         V <sub>IL</sub> 0.2×V <sub>s</sub> Output voltage logic HIGH         V <sub>CV</sub> Roos=∞         V <sub>c</sub> -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| Input voltage, logic LOW  VII.  Output voltage, logic HIGH  Vo.:  Roos=0  Ve-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pF                                   |
| Output voltage logic HIGH Vo. Roos=0 Ve-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Output voltage, logic HIGH Vou Right Vs-0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| 10h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - V                                  |
| $R_{LOAD}$ =2 $k\Omega$ $V_{S}$ -0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ V                                  |
| Output voltage, logic LOW $V_{\text{OL}}$ $R_{\text{LOAD}} = \infty$ 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                    |
| $R_{LOAD}$ =2 k $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
| LDE3 (3 V supply) (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
| Maximum output load capacitance $C_{\text{LOAD}}$ $R_{\text{LOAD}} = 1 \text{ k}\Omega$ 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pF                                   |
| Input voltage, logic HIGH $V_{IH}$ $0.65 \times V_{S}$ $V_{S} + 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| Input voltage, logic LOW $V_{L}$ 0.35× $V_{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Output voltage, logic HIGH $V_{OH}$ $I_0$ =-20 $\mu$ A $V_s$ =0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - V                                  |
| Output voltage, logic LOW $V_{oL}$ $I_o$ =+20 $\mu$ A 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                    |

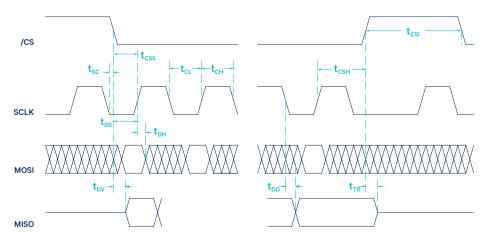
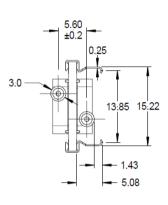
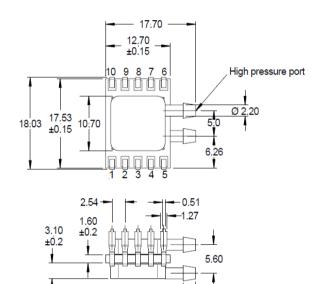



Fig. 6: SPI timing diagram

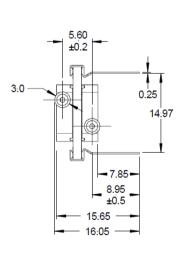

### Specification notes (cont.)

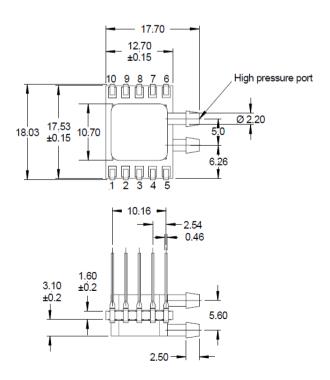

(14) For correct operation of LDE...3... devices, the device driving the SPI bus must have a minimum drive capability of ±2 mA.



## **Dimensional drawing**

- LDE...E... (SMD, 2 ports same side)

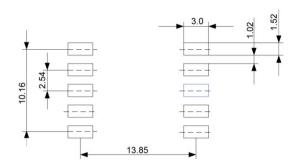



2.50

dimensions in mm, all tolerances ±0.1 mm unless otherwise noted

#### - LDE...F... (DIP, 2 ports same side)





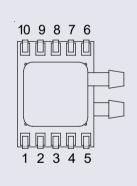

dimensions in mm, all tolerances ±0.1 mm unless otherwise noted



## **Sensor PCB footprint**



dimensions in mm, all tolerances ±0.1 mm unless otherwise noted


## Electrical connection(15)

There are three use cases that will change the manner in which the LDE series device is connected in-circuit:

Case 1: Reading of pressure measurement as a digital (SPI) signal;

Case 2: Reading of pressure measurement as an analog (voltage) signal;

Case 3: Pin-to-pin compatible drop-in replacement for LBA series devices (5 V LDE devices only).



| Pin | Function       | Digital signal output | Case 2:<br>Analog signal output | LBA drop-in replacement (5 V only) |
|-----|----------------|-----------------------|---------------------------------|------------------------------------|
| 1   | Reserved       | NC                    | NC                              | GND                                |
| 2   | V <sub>s</sub> | +5V/+3V               | +5V/+3V                         | +5V                                |
| 3   | GND            | GND                   | GND                             | GND                                |
| 4   | Vout           | NC                    | High impedance analog input     | High impedance analog input        |
| 5   | Vout           | NC                    | (e.g. op-amp, ADC)              | (e.g. op-amp, ADC)                 |
| 6   | SCLK           | Master device SCLK    | GND                             | GND                                |
| 7   | MOSI           | Master device MOSI    | GND                             | GND                                |
| 8   | MISO           | Master device MISO    | GND                             | GND                                |
| 9   | /CS            | Master device (/CS)   | $V_s$                           | GND                                |
| 10  | Reserved       | NC                    | NC                              | GND                                |

## **Ordering information**

| Series | Pressure range |                                 | Calibration |                | Housing                     | Output                          | Grade    |
|--------|----------------|---------------------------------|-------------|----------------|-----------------------------|---------------------------------|----------|
| LDE    | S025           | 25 Pa (0.1 inH <sub>2</sub> O)  | В           | Bidirectional  | E [SMD, 2 ports, same side] | 3 [Non-ratiometric, 3 V supply] | S [High] |
|        | S050           | 50 Pa (0.2 inH <sub>2</sub> O)  | U           | Unidirectional | F [DIP, 2 ports, same side] | 6 [Non-ratiometric, 5 V supply] |          |
|        | S100           | 100 Pa (0.4 inH <sub>2</sub> O) |             |                |                             |                                 | -        |
|        | S250           | 250 Pa (1 inH <sub>2</sub> O)   | _           |                |                             |                                 |          |
|        | S500           | 500 Pa (2 inH <sub>2</sub> O)   | _           |                |                             |                                 |          |

Order code example: LDES250BF6S

#### Specification notes (cont.)

(15) The maximum voltage applied to pin 1 and pins 6 through 10 should not exceed  $V_{\rm S}$ +0.3 V.

E / 11815 / F Subject to change without notice www.first-sensor.com contact@first-sensor.com Page 13/13